
Twitcher
A Twitch Chat / Vote Plugin For Unity

Overview
Ever want to add features to your game that make for a more entertaining engagement for streamers? Ever want to build a
game where streamers can allow their audience to interact with the game?

Well Twitcher might be for you.

This plugin aims to provide you an easy to use, and extendable system for adding that kind of feature to your next project.
It is all based around a system that manages the communication with the Twitch IRC services and provides you easy ways
to receive and send messages easily.

On top of the basic chat system is a voting system that comes with several vote types out of the box. These votes can be
used to add new levels of viewer engagement with streamed games, and can be easily extended to add your own custom
vote types!

Using Twitcher - Chat
You can set up the very basics of twitcher in just a few lines of code. Create a TwitchController, give it a callback for the
messages, and you’re ready to start receiving the chat feed.

NOTE: If you want to test your integration, you will need an oauth token for a twitch account to log in as, these can be
generated from the following url: https://twitchapps.com/tmi/ I am in no way affiliated with this service, but It’s a simple and
in my experience safe means of generating oAuth tokens.

private void Awake()
{
 twitch = TwitchController.Create("oauth_token", "twitch_channel");
 twitch.Client.onMessageReceived += OnMessageReceived;
}

private void OnMessageReceived(Message message)
{
 if (message.Command == TwitchClient.Commands.PRIVMSG)
 {
 Debug.Log($"{message.Sender}: {message.ChatMessage}");
 }
}

The onMessageReceived event will be called for any message that the twitch connection receives, with an exception of the
PING message which is handled within the Twitcher plugin.

So that’s receiving messages, but what about sending them? Well that’s just as simple. The TwitchController class is a
MonoBehaviour that contains the TCP connection to twitch you can send messages through this connection with a single
line of code.

twitch.Client.SendPrivMessage("Your message here");

That’s all there is to it. This message will be sent as the user who’s OAuth token was used to create the TwitchController
object.

https://twitchapps.com/tmi/

Property Comments

RawMessage The raw message as received through the tcp connection.

Info Meta information about the message and sender. This includes information such as
the chat colour for the users name, user status such as subscriber, mod, admin, etc.
And several other useful bits of information.

Command The command type for the message, these can be compared with constant values
stored in TwitchClient.Commands, PRIVMSG will be the most common message type
that you will be interested in and dealing with.

Sender Automatically extracted from the parameters of the message, contains the id of the
sender of the message, In cases of PRIVMSG types, this will be the username of the
person who sent the message, in cases of message types like NOTICE this will be the
name of the twitch server.

ChatMessage In the case of PRIVMSG types this will contain the message the message that the
sender sent to the chat. In the case of other command types, it will be null.

Parameters The broken down parameters of the message as a string array.

Message

Using Twitcher - Votes
Now for the fun stuff, votes.
Twitcher comes with three types of votes already supplied, those vote types are as follows:

- PersistentVote: This vote only ends when you want it to, once started it will continue to rack up votes for as long as
you want, this would be used for much longer time period votes.

- TimedVote: Like it says on the tin, this vote has a time limit, once that time expires the vote will automatically end
and provide you with the results to act upon.

- FirstToVote: This vote ends when one of the options reaches the set amount of votes.

You can create a vote instance at any time using the vote types constructor, but a vote will not start until you assign it to run
on a Twitcher instance. This is done by simply passing the vote to the StartVote method on your TwitchController instance.
The vote will then immediately become active, register itself for message events, and start tracking votes.

Vote types will track the username of the users who are casting votes, if a user votes multiple times within a given votes
duration, then only their latest vote will be counted. When creating a vote you can provide a method to call when the vote
completes, this will be given a list of the votes results, however at any time you can manually check the votes current result
tally and progress status using the Results, and Progress properties respectively.

Property Comments

votePrefix This prefix value must appear at the start of a message for it to be considered a vote.

options Case-insensitive options that can be voted for when typed as the only other part of a
message that is prefixed by the assigned votePrefix.

onComplete Callback that will be called when this vote concludes, and given the votes final results
as its only parameter

PersistentVote

Property Comments

votePrefix (See persistent vote)

options (See persistent vote)

duration Time in seconds that the vote will be active for, this duration will start from when you
pass the vote into the StartVote method of a Twitcher instance.

onComplete (See persistent vote)

TimedVote

Ending Votes
All votes can be ended at any time by calling the EndVote method on it. This will mark the vote as completed, and it
will trigger the normal events when it’s assigned Twitcher updates.

If you want to end any and all active votes for any reason, say the game has ended, rendering the votes redundant,
you can call ClearAllVotes on the TwitchController instance. By default this will silently end all votes, however if
passed the parameter ‘true’ then it will broadcast all the normal events as if the votes had ended normally before
clearing them from the active votes list.

Property Comments

votePrefix (See persistent vote)

options (See persistent vote)

target The number of votes an option requires to be the winning option of the vote.

onComplete (See persistent vote)

FirstToVote

Chat Extras

There is a whole lot of extra information that Twitcher gets for messages that you have access to should you want to
use it. Things like the users chat colour, badges, status values for admin, mod, subscriber, etc. These can all be
accessed via the Info property of a Message instance. Below is a brief overview of the values you can access from
this:

Property Comments

displayName Display name of the user sending the message.

userId UserId of the sending user.

admin (deprecated) True if user has an admin badge, false otherwise.

subscriber (deprecated) True if user has a subscriber badge, false otherwise.

moderator (deprecated) True if user has a moderator badge, false otherwise.

staff (deprecated) True if user has a staff badge, false otherwise.

broadcaster (deprecated) True if user has a broadcaster badge, false otherwise.

permissions Enum flag for admin, subscriber, moderator, broadcaster, staff, viewer.

colourHex Hex string for the users chat colour

colour Unity Color struct for the users chat colour.

timestamp The timestamp at which the twitch service received the message.

bits The number of bits associated with this message.

id ID assigned to this specific message by twitch.

badges All badges associated with the user, each badge contains a badge id (string) and a
version (integer)

emotes A dictionary of all emotes contain in this message. The key is the ID of the emote in
question, the List<Vector2Int> contains the indexes of the message that would
otherwise be replaced with the emote.

Emotes

Since it is intended for you to manage your own display for chat if you chose to display it, you must also handle any
replacement of emotes in said display, however Twitcher does provide a method for downloading emotes.

TwitcherUtils.DownloadEmote can be called, with a given emote ID, and a size value (twitch offers emote images in
3 sizes). This is an async download using UnityWebRequest and you can provide a callback method which will be
called with the resulting image once downloaded.

Chat Commands

New in version 1.0.3, ChatCommands are a simple to extend the behaviour of Twitcher.

ChatCommands are a way of combining a normal onMessageReceived callback with both a permission check, and
an initial message filter. Commands can be constructed independently like the Votes, and then are assigned to a
specific twitch client. Below is example code showing a very basic implementation of a chat command:

public void CreateCommand()
{

var permissions = Message.Permission.Admin | Message.Permission.Broadcaster;
var command = new ChatCommand("!ping", OnCommandReceived, permissions);
command.AssignToClient(twitch.Client);

}

public void OnCommandReceived(Message message)
{

twitch.Client.SendPrivMessage("Pong!");
}

This example creates a command that responds to the chat message of “!ping” but only when the user sending that
message is the broadcaster, or an admin of the channel.

By default, all messages are flagged with the Permission.Viewer flag, but based on the presence of relevant badge
data can also be set as Admin, Broadcaster, Moderator, Subscriber, and Staff. Whilst you can use the permission
value itself, or the TagInfo.HasPermission method to check these permissions, the ChatCommand feature will take
care of that for you, only calling the callback when the appropriate message is sent by an appropriate user.

The addition of chat commands can significantly increase the scope of Twitcher, not only can it be used to
facilitate chat and voting features within a game you’re developing, but it can now be utilized to power more
traditional ChatBot style features such as quotes, giveaways, auto-responses, and more.

Method Comments

AssignToClient Assigns this chat command to a specific twitch client. Note that if this command is
already assigned to another client, it will be removed before being reassigned.

RemoveFromClient Removes a command from a client if it is assigned.

SetPermissions Updates the permissions associated with this command.

